Orbifold Quantum Cohomology of Weighted Projective Spaces

نویسنده

  • ETIENNE MANN
چکیده

In this article, we prove the following results. • We show a mirror theorem : the Frobenius manifold associated to the orbifold quantum cohomology of weighted projective space is isomorphic to the one attached to a specific Laurent polynomial, • We show a reconstruction theorem, that is, we can reconstruct in an algorithmic way the full genus 0 Gromov-Witten potential from the 3-point invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chen-ruan Orbifold Cohomology of Weighted Projective Spaces

Chen and Ruan [6] defined a very interesting cohomology theoryChen-Ruan orbifold cohomology. The primary objective of this paper is to compute the Chen-Ruan orbifold cohomology of the weighted projective spaces, one of the most important space used in physics. The classical tools (orbifold cohomology defined by Chen and Ruan, toric varieties, the localization technique) which have been proved t...

متن کامل

The Quantum Orbifold Cohomology of Weighted Projective Space

We calculate the small quantum orbifold cohomology of arbitrary weighted projective spaces. We generalize Givental’s heuristic argument, which relates small quantum cohomology to S-equivariant Floer cohomology of loop space, to weighted projective spaces and use this to conjecture an explicit formula for the small J-function, a generating function for certain genuszero Gromov–Witten invariants....

متن کامل

Quantum Cohomology and Toric Minimal Model Programs

We give a quantum version of the Danilov-Jurkiewicz presentation of the cohomology of a compact toric orbifold with projective coarse moduli space. More precisely, we construct a canonical isomorphism from a formal version of the Batyrev ring from [5] to the quantum orbifold cohomology in a formal neighborhood of a canonical bulk deformation. This isomorphism generalizes results of Givental [21...

متن کامل

The Full Orbifold K-theory of Abelian Symplectic Quotients

In their 2007 paper, Jarvis, Kaufmann, and Kimura defined the full orbifold K-theory of an orbifold X, analogous to the Chen-Ruan orbifold cohomology of X in that it uses the obstruction bundle as a quantum correction to the multiplicative structure. We give an explicit algorithm for the computation of this orbifold invariant in the case when X arises as an abelian symplectic quotient. Our meth...

متن کامل

On the Cohomological Crepant Resolution Conjecture for Weighted Projective Spaces

We investigate the Cohomological Crepant Resolution Conjecture for reduced Gorenstein weighted projective spaces. Using toric methods, we prove this conjecture in some new cases. As an intermediate step, we show that weighted projective spaces are toric Deligne-Mumford stacks. We also describe a combinatorial model for the orbifold cohomology of weighted projective spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008